Calculus A for Economics

Exercise Number 3

1) Using *only* the definition of a limit of a function, prove the following:

a)
$$\lim_{x \to 2} (3x - 1) = 5$$
 b) $\lim_{x \to 3} (6x - 7) = 11$ c) $\lim_{x \to 2} x^2 = 4$

2) It is given that $\lim_{x\to c} f(x) = 2$, $\lim_{x\to c} g(x) = -1$ and $\lim_{x\to c} h(x) = 0$. Compute:

a)
$$\lim_{x \to c} [f(x)]^2$$
 b) $\lim_{x \to c} \frac{h(x)}{f(x)}$ c) $\lim_{x \to c} \frac{1}{f(x) - g(x)}$

3) It is given that $\lim_{x\to c} g(x) = 0$ and that f(x)g(x) = 1 for all values of x. Prove that $\lim_{x\to c} f(x)$ does not exist.

4) Compute the following limits:

a)
$$\lim_{x \to 2} \frac{x^2 + x + 1}{x^2 + 2x}$$

b)
$$\lim_{x \to 2} \frac{x - 2}{x^2 - 4}$$

c)
$$\lim_{x \to 1} \frac{x^2 - 2x + 1}{x^3 - x}$$

d)
$$\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{x}$$

e)
$$\lim_{x \to 5} \frac{\sqrt{x - 1} - 2}{x - 5}$$

5) It is given that $\lim_{x\to c} f(x) = l$ where $l \neq 0$ and that $\lim_{x\to c} g(x) = 0$. Prove that $\lim_{x\to c} \frac{f(x)}{g(x)}$ does not exist.

Hint: use the identity $f(x) = g(x) \frac{f(x)}{g(x)}$.

6) Use exercise 5) to prove that the limit $\lim_{x\to 1} \frac{x}{x^2-1}$ does not exist.

7) Use the definition of the limit of a function to prove the following:

a)
$$\lim_{x \to 2} x^4 = 16$$
 b) $\lim_{x \to 2} \frac{1}{x} = \frac{1}{2}$

8) Give an example of two functions f(x) and g(x) such that both limits $\lim_{x\to 0} f(x)$ and $\lim_{x\to 0} g(x)$ do not exist, but the limit $\lim_{x\to 0} (f(x) + g(x))$ do exist.

9) Assume that for the two given functions f(x) and g(x), the limit $\lim_{x\to 0} f(x)$ exist but $\lim_{x\to 0} g(x)$ does not exist. Prove that $\lim_{x\to 0} (f(x) + g(x))$ does not exist.