Calculus A for Economics

Exercise Number 3

1) Using only the definition of a limit of a function, prove the following:
a) $\lim _{x \rightarrow 2}(3 x-1)=5$
b) $\lim _{x \rightarrow 3}(6 x-7)=11$
c) $\lim _{x \rightarrow 2} x^{2}=4$
2) It is given that $\lim _{x \rightarrow c} f(x)=2, \lim _{x \rightarrow c} g(x)=-1$ and $\lim _{x \rightarrow c} h(x)=0$. Compute:
a) $\lim _{x \rightarrow c}[f(x)]^{2}$
b) $\lim _{x \rightarrow c} \frac{h(x)}{f(x)}$
c) $\lim _{x \rightarrow c} \frac{1}{f(x)-g(x)}$
3) It is given that $\lim _{x \rightarrow c} g(x)=0$ and that $f(x) g(x)=1$ for all values of x. Prove that $\lim _{x \rightarrow c} f(x)$ does not exist.
4) Compute the following limits:
a) $\lim _{x \rightarrow 2} \frac{x^{2}+x+1}{x^{2}+2 x}$
b) $\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-4}$
c) $\lim _{x \rightarrow 1} \frac{x^{2}-2 x+1}{x^{3}-x}$
d) $\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1}{x}$
e) $\lim _{x \rightarrow 5} \frac{\sqrt{x-1}-2}{x-5}$
5) It is given that $\lim _{x \rightarrow c} f(x)=l$ where $l \neq 0$ and that $\lim _{x \rightarrow c} g(x)=0$. Prove that $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}$ does not exist.
Hint: use the identity $f(x)=g(x) \frac{f(x)}{g(x)}$.
6) Use exercise 5) to prove that the limit $\lim _{x \rightarrow 1} \frac{x}{x^{2}-1}$ does not exist.
7) Use the definition of the limit of a function to prove the following:
a) $\lim _{x \rightarrow 2} x^{4}=16$
b) $\lim _{x \rightarrow 2} \frac{1}{x}=\frac{1}{2}$
8) Give an example of two functions $f(x)$ and $g(x)$ such that both limits $\lim _{x \rightarrow 0} f(x)$ and $\lim _{x \rightarrow 0} g(x)$ do not exist, but the $\operatorname{limit}_{\lim _{x \rightarrow 0}}(f(x)+g(x))$ do exist.
9) Assume that for the two given functions $f(x)$ and $g(x)$, the limit $\lim _{x \rightarrow 0} f(x)$ exist but $\lim _{x \rightarrow 0} g(x)$ does not exist. Prove that $\lim _{x \rightarrow 0}(f(x)+g(x))$ does not exist.
